
www.poll.de

Phosphorrecycling und Energiegewinnung aus Klärschlamm

www.poll.de

Phosphorrecycling und Energiegewinnung aus Klärschlamm

- 1) Gesamtverfahren
- 2) Ultrawaves-Desintegration
- 3) P-Fällung und -Abscheidung
- 4) Aufbereitung des Fällungsproduktes
- 5) Optimierung der Schlammentwässerung

www.poll.de

Zusammenwirken von Ultrawaves, Poll und PARFORCE:

Schlamm-Desintegration mittels ULTRAWAVES

MAP-Fällung und – abscheidung*

Faulung

Erhöhung Entwässerungsfähigkeit mittels ZetaOptimizer

Schlammentwässerung Thermische Verwertung

Desintegration zur:

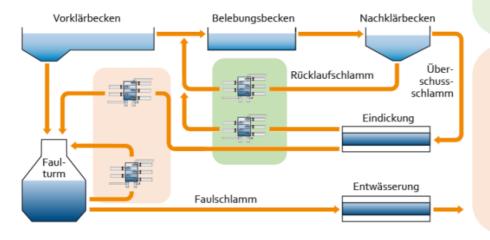
- Optimierung Faulung
- Höhere Gasausbeute
- Reduktion Restschlammmasse
- Lösung von in Mikroorganismen gebundenem P

Aufbereitung MAP zu Phosphorsäure und Vermarktung

- Erfüllung künftige AbKlärV
- Vermeidung P-Rückgewinnung aus Aschen
- Ermöglichen von strat. Freiräumen bei thermischer Verwertung
- Geringere hygroskopische Eigenschaften (Wasserbindung) des Schlammes

- Erhöhung Entwässerungsfähigkeit
- Reduktion Polymereinsatz
- Steigerung TR-Gehalt
- Reduzierung der Rückbelastung
- → Kostenoptimierung durch Massenreduktion und höhere Gasausbeute
- → Zukunftssichere Entsorgung von Klärschlämmen

* bei biologischer P-Eliminierung



www.poll.de

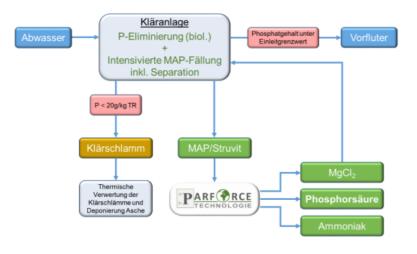
Ultraschall bringt (überschüssige) Mikroorganismen zum "platzen" und setzt Zellinhalte frei (Desintegration).

In Abwasserreinigung:

- · Verhinderung von Blähschlamm und Schäumen
- Verbesserung der biologischen Stickstoff-Elimination
 - → Reduzierung Chemikalienverbrauch

In Schlammbehandlung:

- Überwindung technischer Faulgrenze
 (Hydrolyseschritt) und Intensivierung Faulung
- Erhöhung Biogasausbeute und Reduktion Restschlammmasse
 - → Verbesserte Energieausbeute und Senkung KS-Entsorgungskosten


www.poll.de

Verfahren zur Erzeugung von universell verwendbarer Phosphorsäure aus :

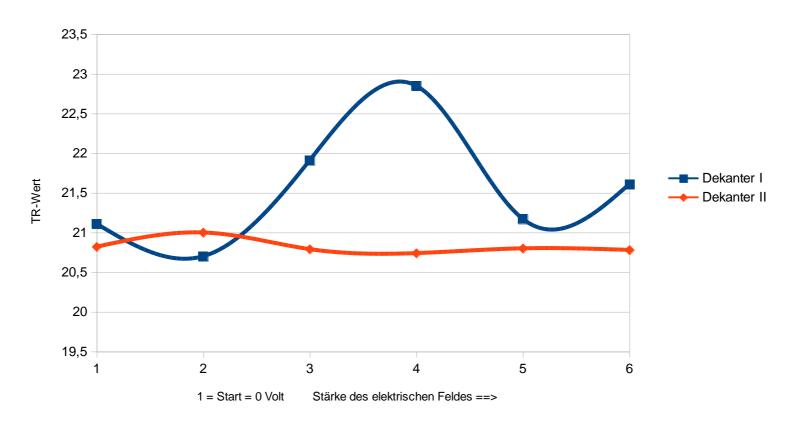
- in biologischer P-Eliminierung gewinnbarem MAP (Magnesiumammoniumphosphat)
- oder aus Klärschlammaschen

- Erfüllung zukünftiger Phosphatrückgewinnungsverpflichtung
- Erzeugung von hochwertiger, universell verwendbarer Phosphorsäure statt Düngemittel:
 - keine Abhängigkeit von Grenzwerten It. DÜMV
 - keine Abhängigkeit vom stark wettbewerbsintensiven Düngemittelmarkt
- insbesondere bei Rückgewinnung aus MAP:
 - geringerer technischer und wirtschaftlicher Aufwand
 - entphosphatierter Klärschlamm kann auch in Co-Verbrennungsanlagen verwertet werden
 - Entphosphatierung verbessert Entwässerungsfähigkeit des Klärschlamms

PGLL
Umwelt- und Verfahrenstechnik

PGLL
Umwelt- und Verfahrenstechnik

www.poll.de



Leipzig, 05.04.2017

www.poll.de

TR-Wert in Abhängigkeit zur Stärke des elektrischen Feldes

www.poll.de

Kommunaler Klärschlamm (Dekanter)

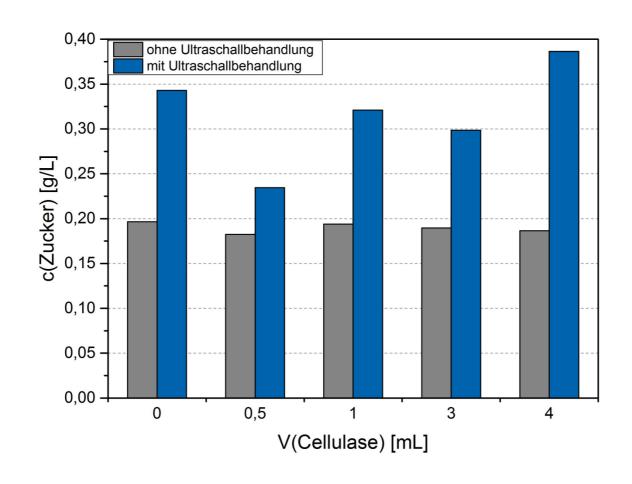
Steigerung des TR-Wertes im entwässerten Klärschlamm

Dünnschlamm 20 m³/h

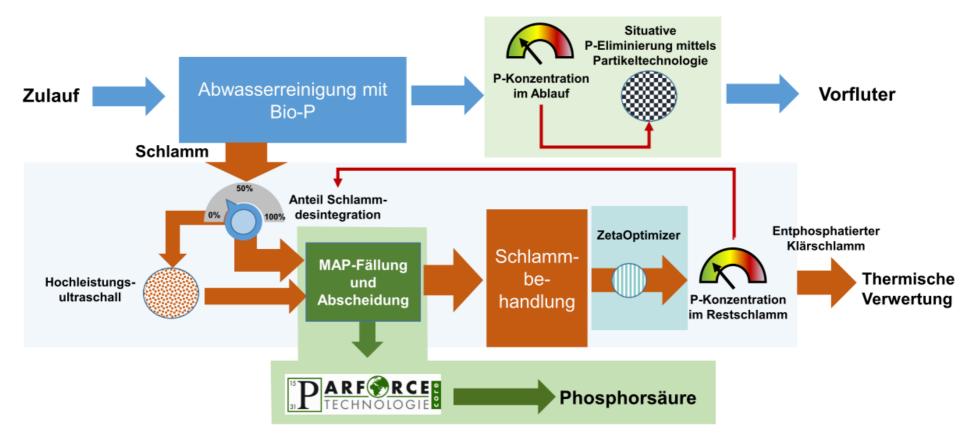
Hochspannungssystem ZetaOptimizer	ohne /	mit
TR _{Feststoff} (Gew%) Steigerung des TR-Wertes um 10 %	20,6	22,9
TR _{Feststoff} (Gew%) Steigerung des TR-Wertes um 11 %	20,2	22,5
TR _{Feststoff} (Gew%) Steigerung des TR-Wertes um 14 %	20,3	23,6

Leipzig, 05.04.2017

PGLL
Umwelt- und Verfahrenstechnik


www.poll.de

Polymereinsparung bei der Schlammentwässerung (Dekanter)


TR _{Austrag}	Polymer (kg/t TS)	ZetaOptimier
26,35	8,9	ausgeschaltet
28,31	8,9	eingeschaltet
26,82	6,0	eingeschaltet

Polymereinsparung 32,6 %

www.poll.de

Erweiterter PARFORCE-Ansatz:

- Entphosphatierung Klärschlamm unter Schwellenwert
- Strategische Optionen für Erfüllung AbfKlärV
- Kostenoptimierung
 - Vereinfachte P-Rückgewinnung
 - Energieausbeute
 - Reduktion Fällmittel
 - Reduktion Restschlammmenge
 - Thermische KS-Verwertung

Schlammdesintegration:

- Erhöhte Gasausbeute
- Restschlamm-Reduktion

Zuverlässige P-Eliminierung durch Bio-P und MAP/Struvit-Fällung und Abscheidung

Phosphorsäuregewinnung:

- · MAP/Struvit Veredelung
- Nebenprodukt als MAP-Fällmittel

Partikeltechnologie für die Abtrennung gelöster Stoffe:

Situative P-Eliminierung im Ablauf (Polizeistufe)

Schlammentwässerung:

- Verbesserung Entwässerung
- Transport- und Entsorgungskosten

PGLL
Umwelt- und Verfahrenstechnik

www.poll.de

Vielen Dank für Ihre Aufmerksamkeit!

am Stand D40, Glashalle

