Ultrawaves Ultraschall als integrierte Lösung für die Abwasserwirtschaft

Dr.- Ing. K. Nickel*,

Dipl.-Kfm. J. Sörensen**, Dipl.-Ing. B. Simbach***,

Dipl.-Ing. G. Klingspor*, Prof. Dr.-Ing. U. Neis****

*ULTRAWAVES GmbH Wasser & Umwelttechnologien info@ultrawaves.de www.ultrawaves.de

SC Consult GmbH j.soerensen@scconsultgmbh.de www.scconsultgmbh.de *Poll Umwelt- und Verfahrenstechnik GmbH www.poll.de ****TU Hamburg Institut für Abwasserwirtschaft & Gewässerschutz neis@tuhh.de

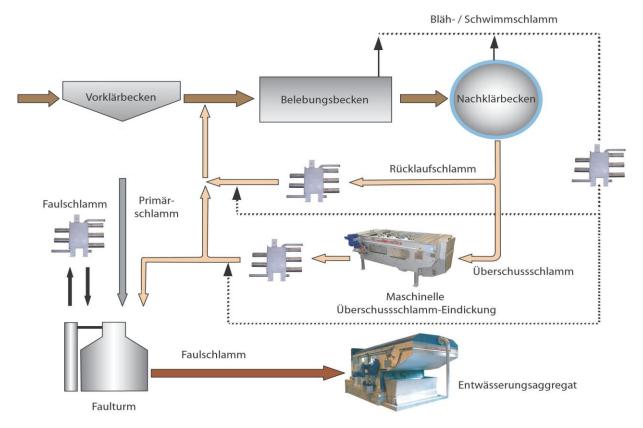
Inhalt

- 1. Ultraschalldesintegration von Klärschlamm
- 2. Intensivierung der anaeroben Schlammstabilisierung
- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren

Übersicht

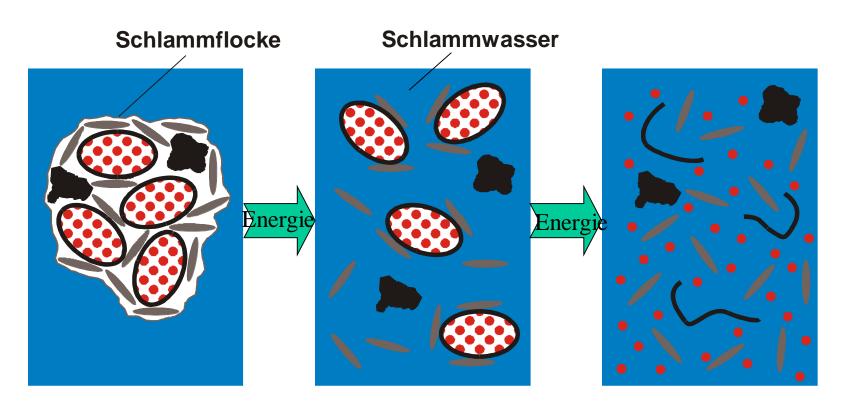
1. Ultraschalldesintegration von Klärschlamm

- 2. Intensivierung der anaeroben Schlammstabilisierung
- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren



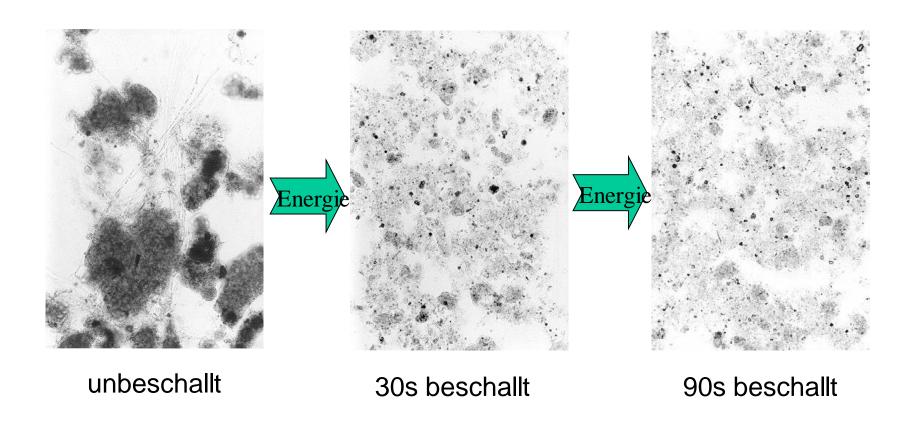
Einsatz der US-Technik auf Kläranlagen

- Intensivierung der anaeroben Schlammstabilisierung
- Intensivierung der aeroben Schlammstabilisierung
- Bekämpfung von Blähund
 Schwimmschlamm
- P-Rückgewinnung

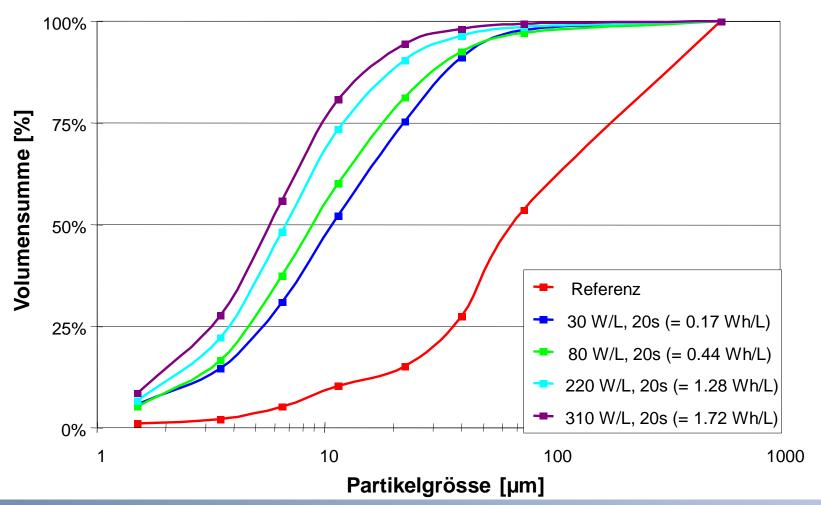


Desintegration von Klärschlamm

extrazelluläre Polymere



Lichtmikroskopische Analyse



Wirkung von US-Behandlung auf Partikel

Akustische Desintegration von Klärschlamm

bewirkt also:

- Zerfall der Flocken / Zellagglomerate
- Reduktion der (mittleren) Partikelgröße
- Senkung der Viskosität
- Freisetzung gelöster organischer Substanz (CSB)
- Freisetzung von Enzymen (EPS), Proteinen
- Auflösung von Zellen
- Freisetzung von organisch gebundenem Phosphor

Übersicht

1. Ultraschalldesintegration von Klärschlamm

2. Intensivierung der anaeroben Schlammstabilisierung

- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren

Reaktionskinetik: Anaerober Abbau von Klärschlamm

$$dL/dt = -k \cdot (L - L^*)$$

- L Konzentration der org. Schlammbestandteile [kg/m³]
- L* nicht abbaubare organische Schlammbestandteile [kg/m³]
- **k** Geschwindigkeitskonstante [d⁻¹]

Kläranlage Bamberg

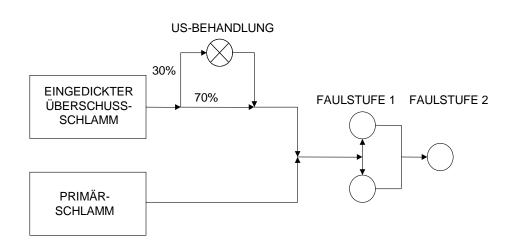
Kläranlage Bamberg

Kenndaten:

- Ausbaugrösse: 220.000 EW
- Belastung: 330.000 EW
- 150 m³/d Primärschlamm, 250 m³/d ÜSS
- (3) Faulbehälter, 18 d VWZ
- 35% oTR-Abbau

Ziel:

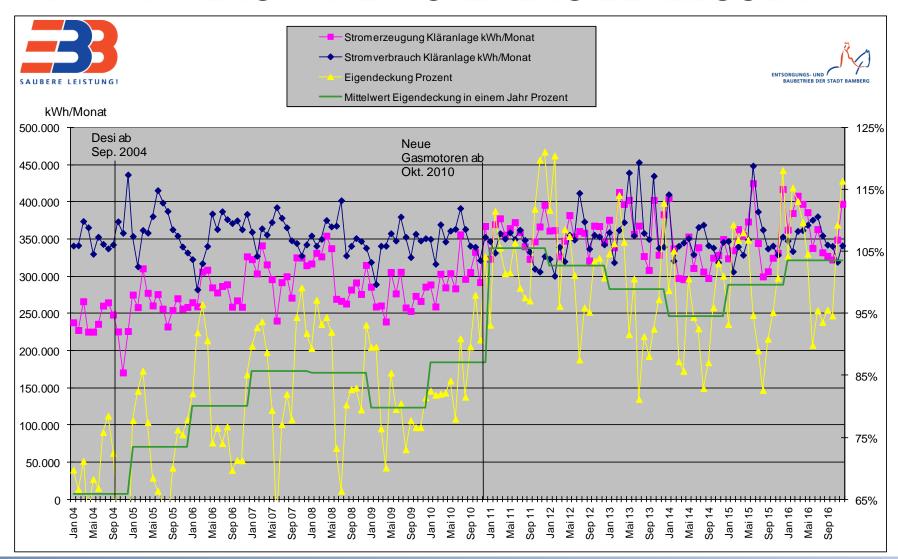
- 40% oTR-Abbau
 - Lösung 1: Bau eines neuen 3.000 m³ Faulbehälters
 - Lösung 2: Einsatz von Ultraschall zur Intensivierung der Faulung



Kläranlage Bamberg

Ultraschallinstallation in 2004:

Beschallung von 30% des ÜSS (~ 75 m³/d) @ 3.2 kWh/m³



KA BAMBERG – NETTO-ENERGIEERZEUGER

Übersicht

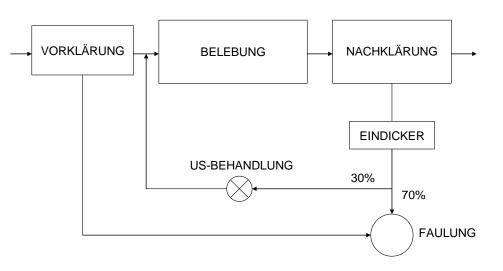
- 1. Ultraschalldesintegration von Klärschlamm
- 2. Intensivierung der anaeroben Schlammstabilisierung
- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren

Kenndaten:

- Ausbaugrösse: 40.000 EW
- Belastung: 54.000 EW
- Nitrifikation und intermittierende Denitrifikation bei einem Gesamtschlammalter von 22 d
- Schwimmschlammbildung im Winter

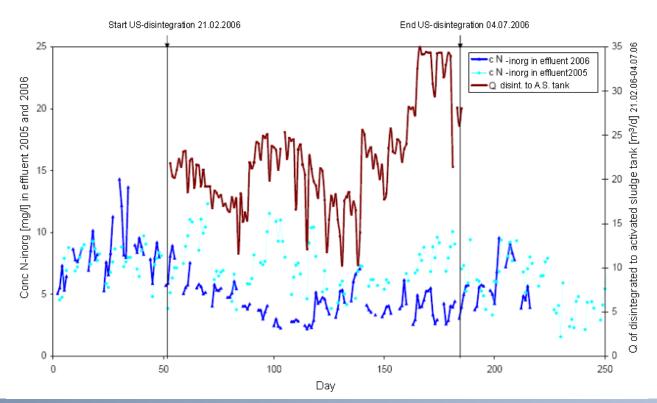
Ziel: "Prozessstabilisierung"

- Minimierung der Überschussschlammmenge
- Verbesserung der Denitrifikation
- Bekämpfung von Schwimmschlamm



Ultraschallinstallation in 2006:

Beschallung von 30% des ÜSS (~ 25 m³/d) @ 5.0 kWh/m³



Erfolge nach Einsatz der Ultraschalldesintegration:

- kein Schwimmschlamm auf den Belebungsbecken
- Reduktion der Masse an ÜSS
- Reduktion der N-Konzentration im Kläranlagenablauf (N < 3 mg/l)

Vergleichszeitraum	Zulauf KA	Zula	uf BB	Ablauf KA	ÜSS-Abfuhr
Mittelwert	Q [m³/d]	Bd CSB [kg/d]	Bd Nges [kg/d]	Bd Nanorg [kg/d]	TR [t]
01.03 04.07. 2005	12.834	3.838	494	93,6	267
01.03 04.07.2006	16.101	4.682	696	65,4	232

Vergleichszeitraum	N-Elimination	Reduktion ÜSS	
Mittelwert	[%]	absolut [%]	spezifisch [%]
01.03 04.07. 2005	81		
01.03 04.07.2006	90	-13	-30

 Verrechnung der Kosten (Investitionskosten & Ingenieurbetreuung) nach § 10.3 AbwAG für die Betriebsoptimierung in Höhe von 269.000 EUR mit der Abwasserabgabe der Jahre 2004 – 2006

Übersicht

- 1. Ultraschalldesintegration von Klärschlamm
- 2. Intensivierung der anaeroben Schlammstabilisierung
- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren

Intensivierung der Klärschlammfaulung

SchlammDesintegration
mittels
ULTRAWAVESHLUS

MAP-Fällung und – abscheidung*

Faulung

Erhöhung Entwässerungsfähigkeit mittels Zeta-Optimizer

Schlammentwässerung Thermische Verwertung

Desintegration zur:

- Optimierung Faulung
- Höhere Gasausbeute
- Reduktion Restschlammmasse
- Lösung von in Mikroorganismen gebundenem P

Aufbereitung MAP zu Phosphorsäure und Vermarktung

- Erfüllung künftige AbKlärV
- Vermeidung P-Rückgewinnung aus Aschen
- Ermöglichen von strat. Freiräumen bei thermischer Verwertung
- Geringere
 hygroskopische
 Eigenschaften
 (Wasserbindung)
 des Schlammes

- Erhöhung Entwässerungsfähigkeit
- ReduktionPolymereinsatz
- Steigerung TR-Gehalt
- Reduzierung der Rückbelastung

- → Kostenoptimierung durch Massenreduktion und höhere Gasausbeute
- → Zukunftssichere Entsorgung von Klärschlämmen

* bei biologischer P-Eliminierung

Intensivierung der Klärschlammfaulung und Erhöhung der Entwässerbarkeit

SchlammDesintegration
mittels
ULTRAWAVESHLUS

MAP-Fällung und – abscheidung*

Faulung

Erhöhung Entwässerungsfähigkeit mittels Zeta-Optimizer

Schlammentwässerung Thermische Verwertung

Desintegration zur:

- Optimierung Faulung
- Höhere Gasausbeute
- Reduktion Restschlammmasse
- Lösung von in Mikroorganismen gebundenem P

Aufbereitung MAP zu Phosphorsäure und Vermarktung

- Erfüllung künftige AbKlärV
- Vermeidung P-Rückgewinnung aus Aschen
- Ermöglichen von strat. Freiräumen bei thermischer Verwertung
- Geringere
 hygroskopische
 Eigenschaften
 (Wasserbindung)
 des Schlammes

- Erhöhung Entwässerungsfähigkeit
- Reduktion Polymereinsatz
- Steigerung TR-Gehalt
- Reduzierung der Rückbelastung

- → Kostenoptimierung durch Massenreduktion und höhere Gasausbeute
- → Zukunftssichere Entsorgung von Klärschlämmen

* bei biologischer P-Eliminierung

Phosphorrückgewinnung aus Klärschlamm

SchlammDesintegration
mittels
ULTRAWAVESHLUS

MAP-Fällung und – abscheidung*

Faulung

Erhöhung Entwässerungsfähigkeit mittels Zeta-Optimizer

Schlammentwässerung Thermische Verwertung

Desintegration zur:

- Optimierung Faulung
- Höhere Gasausbeute
- Reduktion Restschlammmasse
- Lösung von in Mikroorganismen gebundenem P

Aufbereitung MAP zu Phosphorsäure und Vermarktung

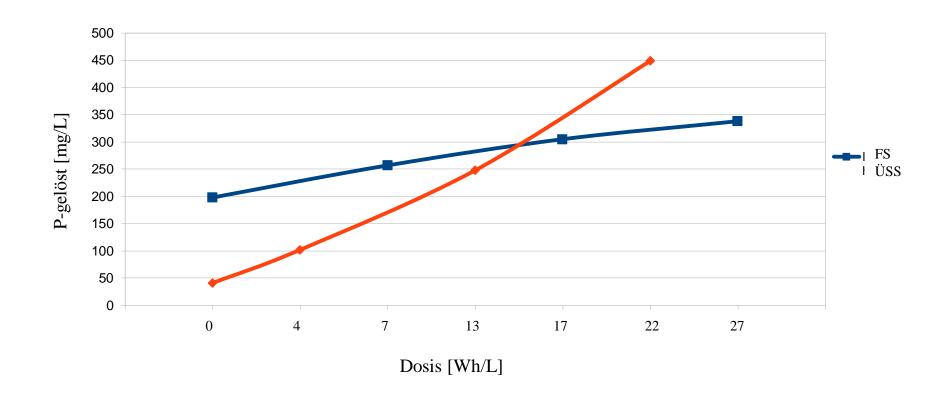
- Erfüllung künftige AbKlärV
- Vermeidung P-Rückgewinnung aus Aschen
- Ermöglichen von strat. Freiräumen bei thermischer Verwertung
- Geringere
 hygroskopische
 Eigenschaften
 (Wasserbindung)
 des Schlammes

- Erhöhung Entwässerungsfähigkeit
- Reduktion Polymereinsatz
- Steigerung TR-Gehalt
- Reduzierung der Rückbelastung

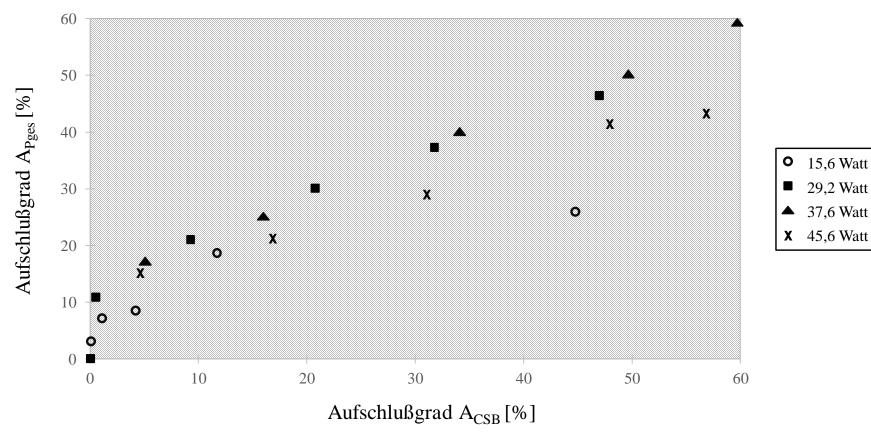
- → Kostenoptimierung durch Massenreduktion und höhere Gasausbeute
- → Zukunftssichere Entsorgung von Klärschlämmen

* bei biologischer P-Eliminierung

Pilotanlage – KA Magdeburg



P-Freisetzung durch Ultraschall-Desintegration



Laborversuche an der TUHH*

*Zellhorn 1998

P-Rückgewinnung aus der Schlammphase

- 1) Superparamagnetische Partikel
- 2) Calcium-Silikat-Hydrat (CSH, ggf. modifiziert)
- 3) Magnesiumammoniumphosphat
- 4) P-Fällung und -Abscheidung

P-Rückgewinnung nach Ultraschall-Desintegration

Beispiel: Gärrestbehandlung mit Ultrawaves-Desintegration und superparamagnetischen Partikeln

Desintegration zur

· Lösung von organisch gebundenem P Adsorptive P-Bindung und Abscheidung aus dem desintegrierten Gärrest

Übersicht

- 1. Ultraschalldesintegration von Klärschlamm
- 2. Intensivierung der anaeroben Schlammstabilisierung
- 3. Intensivierung der aeroben Schlammstabilisierung
- 4. Phosphorrückgewinnung aus Klärschlamm
- 5. Entwicklung von Ultraschallreaktoren

Entwicklung von US-Reaktoren zur Klärschlammbehandlung

- Behandlung grosser Volumenströme
- Hoher Aufschlussgrad
- Kontinuierlicher Betrieb (bei variierenden Schlammeigenschaften)
- Stabilität gegenüber Störstoffen im Klärschlamm
- Geringer Wartungsaufwand

Ultrawaves Ultraschallsystem

Technologie
Transfer Innovation
2002

Innovationspreis
Deutsche Industrie
2006

Innovationspreis
Baden Württemberg
2007

ULTRAWAVES – Partner

슬러지리액터

쥐카멕스-이역

1) 寿 五 紫 株式 会社

(トリシス 超音波汚泥減量化装置 ~ウェーブ・スリマー~

株式会社 西島製作所

Fazit

- Ultraschallbehandlung zur Klärschlammdesintegration ist Stand der Technik
- Merkblatt DWA-M 302 zeigt geeignete Systeme
- Weltweite Referenzen (in mehr als 15 Ländern)
- HLUS ist geeignetes Desintegrationsverfahren zur Freisetzung von Phosphor aus dem Überschussschlamm

